TSTP Solution File: SEV210^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV210^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n114.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:53 EDT 2014

% Result   : Timeout 300.03s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV210^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n114.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:29:41 CDT 2014
% % CPUTime  : 300.03 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x151d560>, <kernel.Type object at 0x151d368>) of role type named a_type
% Using role type
% Declaring a:Type
% FOF formula (<kernel.Constant object at 0x151df38>, <kernel.Constant object at 0x151d998>) of role type named v
% Using role type
% Declaring v:a
% FOF formula (<kernel.Constant object at 0x1957e60>, <kernel.Constant object at 0x151d998>) of role type named u
% Using role type
% Declaring u:a
% FOF formula (<kernel.Constant object at 0x151d560>, <kernel.DependentProduct object at 0x18f9ab8>) of role type named cP
% Using role type
% Declaring cP:(a->(a->a))
% FOF formula (<kernel.Constant object at 0x151df38>, <kernel.Constant object at 0x18f9b48>) of role type named y
% Using role type
% Declaring y:a
% FOF formula (<kernel.Constant object at 0x151d560>, <kernel.Constant object at 0x18f9b00>) of role type named x
% Using role type
% Declaring x:a
% FOF formula (<kernel.Constant object at 0x151df38>, <kernel.Constant object at 0x18f9290>) of role type named cZ
% Using role type
% Declaring cZ:a
% FOF formula (((and ((and (forall (Xx0:a) (Xy0:a), (not (((eq a) ((cP Xx0) Xy0)) cZ)))) (forall (Xx0:a) (Xy0:a) (Xu0:a) (Xv0:a), ((((eq a) ((cP Xx0) Xu0)) ((cP Xy0) Xv0))->((and (((eq a) Xx0) Xy0)) (((eq a) Xu0) Xv0)))))) (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx0:a) (Xy0:a), (((and (X Xx0)) (X Xy0))->(X ((cP Xx0) Xy0)))))->(forall (Xx0:a), (X Xx0)))))->((forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) u) u)))->((forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R y) v) v)))->(forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP x) y)) ((cP u) v)) ((cP u) v))))))) of role conjecture named cS_LEM1E_pme
% Conjecture to prove = (((and ((and (forall (Xx0:a) (Xy0:a), (not (((eq a) ((cP Xx0) Xy0)) cZ)))) (forall (Xx0:a) (Xy0:a) (Xu0:a) (Xv0:a), ((((eq a) ((cP Xx0) Xu0)) ((cP Xy0) Xv0))->((and (((eq a) Xx0) Xy0)) (((eq a) Xu0) Xv0)))))) (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx0:a) (Xy0:a), (((and (X Xx0)) (X Xy0))->(X ((cP Xx0) Xy0)))))->(forall (Xx0:a), (X Xx0)))))->((forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) u) u)))->((forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R y) v) v)))->(forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP x) y)) ((cP u) v)) ((cP u) v))))))):Prop
% We need to prove ['(((and ((and (forall (Xx0:a) (Xy0:a), (not (((eq a) ((cP Xx0) Xy0)) cZ)))) (forall (Xx0:a) (Xy0:a) (Xu0:a) (Xv0:a), ((((eq a) ((cP Xx0) Xu0)) ((cP Xy0) Xv0))->((and (((eq a) Xx0) Xy0)) (((eq a) Xu0) Xv0)))))) (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx0:a) (Xy0:a), (((and (X Xx0)) (X Xy0))->(X ((cP Xx0) Xy0)))))->(forall (Xx0:a), (X Xx0)))))->((forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) u) u)))->((forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R y) v) v)))->(forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP x) y)) ((cP u) v)) ((cP u) v)))))))']
% Parameter a:Type.
% Parameter v:a.
% Parameter u:a.
% Parameter cP:(a->(a->a)).
% Parameter y:a.
% Parameter x:a.
% Parameter cZ:a.
% Trying to prove (((and ((and (forall (Xx0:a) (Xy0:a), (not (((eq a) ((cP Xx0) Xy0)) cZ)))) (forall (Xx0:a) (Xy0:a) (Xu0:a) (Xv0:a), ((((eq a) ((cP Xx0) Xu0)) ((cP Xy0) Xv0))->((and (((eq a) Xx0) Xy0)) (((eq a) Xu0) Xv0)))))) (forall (X:(a->Prop)), (((and (X cZ)) (forall (Xx0:a) (Xy0:a), (((and (X Xx0)) (X Xy0))->(X ((cP Xx0) Xy0)))))->(forall (Xx0:a), (X Xx0)))))->((forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) cZ)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) cZ)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) u) u)))->((forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or
% EOF
%------------------------------------------------------------------------------